ks | ©IEEE

ver & Energy Society ®

icolaos A. Cutululis

0 %, 9 ' g

“Technical University of Denmark




(c#es | O IEEE
DTU Power & Energy Systems

Department of Wind and Energy Systems [E=

]acorb ﬁstergaard

Power-to-X and Distributed E-mobility PowerlLabDK
Storage Energy Systems and Prosumer (PLK)

Designi ilient
es I g n I n g a reSI I e n , Energy Markets Power Systems

and Analytics
(EMA) (PTX) (DES) Integration

:  renewable-based 127 97
E t Cutululis Chresten Treh‘olt ol PeterHl;;ch And‘;r‘s‘re‘n Frida Fr051
o . ) o
: ene rgy sys em employees semorsfa?fentlﬂc

A society fully powered by wind and other renewables requires a

fundamental redesign of the energy system as we know it. Security
] and resilience must be more thoroughly addressed in a system
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Energy Islands

Energy islands are hubs that
efficiently collect energy from
surrounding offshore wind
power plants far out at sea
(offshore energy hubs).

Large DC power connections
are used to transport energy to
surrounding countries or
energy systems.

These connections facilitaté the
energy exchange between
countries or energy systems.

The hubs may host production
of green fuels through Power-
to-X processes.
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Offshore Energy Hubs project

Consortium and focus areas

Resilient hub design &
Methods & tools for
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stability, control and
Stable and resilient
fault management of hub operation ¢r5ted SIEMENS Gamesa
OEH i i i RENEWABLE ENERGY
Optimized design of
WPPs connected to
GREEN
e o M-
energy islands (Hellenic Cables)
OEH Optimized Hub optimized Cost-efficient
offshore PtX PEX flexibility for WPP design =
electrolysers & cable WTeffciency SuperGrid ‘energy s
nstitute
solutions S
Strong synergies between the
Develop Bornholm as test center for development areas

Framework to coordinate the
development across the focus areas
https://offshoreenergyhubs.eu \ J

energy hub technologies
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Proof-of-concept and validation of
control solutions ensuring stable and
resilient operation of multi-terminal
zero-inertia hub

PtX Cost-efficient integration of PtX in
offshore environment and high-
pressure electrolysis for capital cost
Stabilizing grid-services uitlizing the reductions
Develop components for combined transmission flexibility of large-scale PtX installation CREEN
of electricity and hydrogen and hence providing a ENCERGINET ®rsted HYDROGEN
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Preparing Bornholm as a large scale develop-
ment and demonstration site for energy island
technologies will become essential stepping
stone towards realization of energy islands.
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Small signal stability

Python-based tool

Based on input/output between the subsystems
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SMOOTH
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(Small-Signal Modelling of
Offshore Energy Hubs Tool)
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Stable and resilient

WP2 hub operation

Cost-efficient
WPP design

Hub optimized
offshore PtX

PtX flexibility for
WT efficiency

|I0s in DQ frame
Controls in local dg frame

Linearized equations

System \

P.Qye

N

iDQ,WF‘ iDQ.Line' iDQ'"a"Sﬂ Ipa conv,
| WF 1 VDQ,WF1 AC Line 1 VbaHUB Vba.HuB Transf. 1 Voacony, Conv 1 |—
iDQ.WF2 iDQ,LineZ |D(3|.lransi’2 |DQ,conv2
|| WF 2 Voawr, AC Line 2 VbaHUB VbaHus Transf. 2 Voacony, Conv2 —
AC hub
P’Qconv
i[)Q\,\,;:K iDQ,Linek iDQ.(ransfn iDQ,conv"
WFk VDQvWFx RO 1 Vb Hus Voa.Hus Transf. n VDQ,conv“ Convn y

Source: Duvivier, A., et al, Small-Signal Modelling of Offshore Energy Hubs, PSCC 2026 (under review)
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Small signal stability
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Source: Duvivier, A., et al, Small-Signal Modelling of Offshore Energy Hubs, PSCC 2026 (under review)
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Grid codes for OWPP
connected to OEH

Due to HVDC transmission system, Two types of identified challenges:

OWPPs are isolated from the AC grid. * Economical
* Voltage and Frequency operating
Opportunity: Develop cost-efficient range
solutions for OWPPs connected to OEH * Reactive power control
e Fault ride through
Focus: GCR modifications for WPP o Emergency power control
design optimization e Technical

* Grid-forming capability

e Black-start and restoration
services

* |nertia provision
* Fast frequency response

https://offshoreenergyhubs.eu

Source: Kamenica, M., et al. Offshore Wind Farms and Energy Hub Integration. In Proceedings of 2025 CIGRE Symposium Trondheim



https://offshoreenergyhubs.eu/

. . @;Es <& IEEE
Energy dissipation strategies \ fep |
Offshore energy hubs (or MT-HVDC)

In the event of a fault, power

needs to be dissipated to keep ng aéf DQE
WTs connected. DNSE|

42w

Options:
- Onshore HVDC choppers
- Offshore AC choppers

HHHHHHHHHH

. net e

- WTs DC link choppers Iﬁelgmm | Denm:kgl

Duvivier, A. J. F., et al., (2024). Energy Dissipation Strategies for Offshore MT-HVDC Systems. In Proceedings of CIGRE Paris Session 2024
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Energy dissipation strategies
Results

HVDC voltage

HVDC

Energy [GJ] | Equivalent time
at rated power [s]
0.82

0.3

HVDC
WE-GF
WT 0.4 0.4

OC-GF 0.45 0.45
Table 2: Energy dissipated for an onshore AC 3P-G fault
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Figure 8: Impact of HVDC chopper power rating
Figure 9: Impact of the rate of change in power of offshore converters

Duvivier, A. J. F., et al., (2024). Energy Dissipation Strategies for Offshore MT-HVDC Systems. In Proceedings of CIGRE Paris Session 2024
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Emergency Power Control (EPC)

* Aims to protect OWPPs and
enable active power dissipation

* Allows active power limit
reduction from 100% to 0% e

Protection ——» HVDC OWFP

* Power output stays reduced Pover it | Pover it |
while EPC signal is active

e Uses DC choppers to absorb
excess energy

https://offshoreenergyhubs.eu
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Emergency Power Control (EPC)
EPC control

EPC operates in two stages:

* FRT Operation

* Reduced Power Operation
After EPC activation: D

* The control enters FRT mode,
immediately forcing active power
output (from grid side converter) to
the new limit.

* The injected active power (from
machine side converter) starts

dropping towards the new limit, and _ % m

once it reaches the new setpoint, the
outer control resumes, and the turbine ..
operates in reduced power mode.

https://offshoreenergyhubs.eu
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Umbilical cable
Hybrid transmission

@c Power + Hydrogen Gas)

Static Submarine inter array cable

Interstitial component

FO unit

https://offshoreenergyhubs.eu

@pf;iss

Power & Energy Society®

< IEEE

Concept:

To integrate 1 up to 3 hydrogen gas pipes into
the outer interstices of the laid-up cores of a
66kv inter array submarine cable.

A two-stage approach:
* Design based on feasibility study

e Test according to relevant international
standards
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Electrolyzer on OEH

Stable and resilient
hub operation

Ramp rate limitation
———

-
1
]
1
i/ /
]
1
1
1
1

Future proof
energy islands

0.8

Cost-efficient

Hub optimized
WPP design
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Taranin, N., et al., (Accepted/In press). On the Ramp-Rate Limitation of Electrolysis Plants: Modeling Fundamentals and System-Level Impact Analysis. IEEE

https://offshoreenergyhubs.eu Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2025.3611711
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Electrolyzer on OEH

Data-driven degradation prediction model

/ Input Data

Data-driven degradation prediction model \ /

Validation \

Lab test settings and results
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Stable and resilient
hub operation

Future proof
energy islands

Cost-efficient
WPP design

Hub optimized
offshore PtX

PtX flexibility for
WT efficiency
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(c) Actual vs Predicted target variable

(d) Residuals of test samples

Fig. 6: Performance assessment results

Hmon 15000

Fig. 7: Validation of the model based on the test samples from

the dataset with s = 0

Taranin, N., et al. (in preparation). A Data-driven Model for Electrolysis Stack Degradation Estimation Under Different Power Consumption Profiles
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Summary

 Offshore energy hubs control and operation quite challenging, tools
for small signal stability are required
... also for large transients

 Opportunities for design optimization for OWPP connected to OEH

* Electrolyzers can provide balancing services, but better
understanding/modeling of ramp rates & degradation needed
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